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I. OPTIMAL TRANSPORT FOR AFFINE
TRANSFORMATIONS

Our main hypothesis is that the transformation T(·)
preserves the conditional distribution

Ps(y|xs) = Pt(y|T(xs))

Hence, if we are able to estimate a transformation T0(·)
such that for all x, T0(x) = T(x), we can compute the
exact conditional probability distribution of any example x
in the target domain through

Pt(y|x) = Ps(y|T−10 (x))

supposing that T0 is invertible. We can remark that the abil-
ity of our approach to recover the conditional probability of
an example essentially depends on how well the condition
T0(x) = T(x) ∀x is respected. In the following, we prove
that, for empirical distributions and under some mild con-
ditions (positive definite A), the estimated transportation
map T0 obtained by minimizing the `2 ground metric does
recover exactly the true transformation T.

We want to show that, if µt(x) = µs(Ax+b) where A ∈
S+ and b ∈ Rd, then the estimated optimal transportation
plan T0(x) = Ax + b. This boils down to proving the
following theorem.

Theorem 1.1: Let µs and µt be two discrete distributions
each composed of n diracs as defined in Equation (1) in
the paper. If the following conditions hold

1) The source samples in µs are xsi ∈ Rd,∀i ∈ 1, . . . , n
such that xsi 6= xsj if i 6= j .

2) All weights in the source and target distributions are
equal to 1

n .
3) The target samples are defined as xti = Axsi +b i.e.

an affine tranformation of the source samples.
4) b ∈ Rd and A ∈ S+ is a strictly positive definite

matrix.
5) The cost function c(xs,xt) = ‖xs − xt‖2.

then the solution T0 of the optimal transport problem
gives T0(xsi ) = Axsi + b = xti ∀i ∈ 1, . . . , n.

First, note that the OT problem (and in particular the
sum and positivity constraints) forces the solution γ to be a
doubly stochastic matrix weighted by 1

n . Since the objective
function is linear, the solution will be a vertex of the set of
doubly stochastic matrices which is a permutation matrix
as stated by the Birkhoff-von Neumann Theorem [1].

To prove Theorem 1.1 we first show that, given the above
conditions, if the solution of the discrete OT problem is the
identity matrix γ = 1

nIn, then the corresponding transporta-
tion T0(x) gives T0(xsi ) = Axsi +b = xti ∀i ∈ 1, . . . , n.
This property results from the interpolation formula in
Equation (14), which states that an interpolation along the
Wasserstein manifold from the source to target distribution
with t ∈ [0, 1] is defined as:

µ̂ =
∑
i,j

γ0(i, j)δ(1−t)xs
i+tx

t
j
.

When γ = 1
nIn, it leads to

µ̂ =
1

n

∑
i

δ(1−t)xs
i+tx

t
i
.

This equation shows that the mass from each sample xsi is
transported without any splitting to its corresponding target
sample xti hence T0(xsi ) = xti. Indeed, we have

(1− t)xsi + txti = (1− t)xsi + t(Axsi + b) (1)
= (1− t− tA)xsi + tb,

which for t = 1 gives T0(xsi ) = xti. Hence, the OT
solution γ = 1

nIn yields an exact reconstruction of the
transformation on the samples and T0(xsi ) = Axsi + b =
xti ∀i ∈ 1, . . . , n.

Consequently, to prove Theorem 1.1 we just need to
prove that the OT solution γ is equal to 1

nIn given the
above conditions. This is done in the following for some
particular cases of affine transformations and for the general
case where A ∈ S+ and b ∈ Rd.

For better readability we will denote a sample in the
source domain xsi as xi, whereas a sample in the target
domain is xti.

A. Case with no transformation (A = Id and b = 0,
Figure 1)

In this case, there is no displacement.

γ∗ = argmin
γ∈B

〈γ,C0〉F (2)

The solution is obviously γ = 1
nIn, since it does not

violate the constraints and is the only possible solution with
a 0 loss (any mass not on the diagonal of γ would imply
an increase in the loss).
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Fig. 1: Optimal transport in the affine transformation 1:
case with no transformation
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Fig. 2: Optimal transport in the affine transformation 2:
case with translation

B. Case with translation (A = Id and b ∈ Rd, Figure 2)

In this case, the metric matrix becomes C such that

C(i, j) = ‖xi − xj − b‖2

= ‖xi − xj‖2 + ‖b‖2 − 2b>(xi − xj).

In this case the solution γ = I. The corresponding permu-
tation permI leads to the loss

J(I) =
1

n

n∑
i=1

‖xi − xi − b‖2 = ‖b‖2.

In the general case, the loss for a permutation perm can
be expressed as

J(γ) =
1

n

n∑
i=1

‖xi − xperm(i) − b‖2

=
1

n

n∑
i=1

‖xi − xperm(i)‖2+

‖b‖2 − 2

n

n∑
i=1

(xi − xperm(i))
>b

=
1

n

n∑
i=1

‖xi − xperm(i)‖2 + ‖b‖2 − 2

n

n∑
i=1

(xi − xi)
>b

=
1

n

n∑
i=1

‖xi − xperm(i)‖2 + ‖b‖2

= ‖b‖2 +
1

n

n∑
i=1

‖xi − xperm(i)‖2

Since xi 6= xj , if i 6= j, for any permutation term
perm(i) 6= i then ‖xi − xperm(i)‖2 > 0. This means
that any permutation that is not the identity permutation
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Fig. 3: Optimal transport in the affine transformation 3:
general case

will have a loss strictly larger that the loss of the identity
permutation. Therefore, the solution of the optimization
problem is the identity permutation.

This shows that a translation of the data does not change
the solution of the optimal transport.

C. General case (A ∈ S+ and b ∈ Rd, Figure 3)

In this case, we will set b = 0 since, as proven previ-
ously, a translation does not change the optimal transport
solution.

The loss can be expressed as

J(γ) =
1

n

n∑
i=1

‖xi −Axperm(i)‖2

=
1

n

n∑
i=1

‖xi‖2 + ‖Axperm(i)‖2 − 2x>i Axperm(i)

=
1

n

n∑
i=1

‖xi‖2 + ‖Axi‖2 −
2

n

n∑
i=1

x>i Axperm(i).

The solution of the optimization will then be the per-
mutation that maximizes the term

∑n
i=1 x

>
i Axperm(i).

A is a positive definite matrix, which means that the
previous term can be seen as a sum of scalar prod-
ucts

∑n
i=1〈A1/2xi,A

1/2xperm(i)〉 =
∑n
i=1〈x̃i, x̃perm(i)〉,

where x̃i = A1/2xi. It is easy to show that

0 ≤
∑
i

‖x̃i − x̃perm(i)‖2 = 2
∑
i

‖x̃i‖2 − 2
∑
i

x̃>i x̃perm(i),

which means that∑
i

‖x̃i‖2 ≥
∑
i

x̃>i x̃perm(i).

The identity permutation is then a maximum of the cross
scalar product and a minimum of J . Since xi 6= xj , if
i 6= j the equality stands only for the identity permutation.
This means that once again the solution of the optimization
problem is the identity matrix. Note that if A has negative
eigenvalues, the transport fails in reconstructing the original
transformation, as illustrated in Figure 4.

II. INFLUENCE OF THE CHOICE OF THE COST FUNCTION

We examine here role played by the type of cost function
C used in the adaptation. This cost function allows natu-
rally to take into account the specificity of the data space.
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Fig. 4: Optimal transport in the affine transformation 4:
case with negative eigenvalues

In the case of the Office-Caltech dataset, the features are
histograms. We have tested our OT-IT adaptation strategy
with alternative costs that operate directly on histograms (`2
and `1 norms), as it is a common practice to consider those
metrics when comparing distributions. Also, as mostly done
in the literature, we consider the pre-pocessed features (nor-
malization + zscore) together with Euclidean and squared
Euclidean norms. As it can be seen in Table I, the best
results are not always obtained with the same metric. In
the paper, we choose to only consider the `2 norm on pre-
processed data, as it is the one that gave the best result
on average, but it is relevant to question what is the best
metric for an adaptation task. Several other metrics could be
considered, like geodesic distances in the case where data
live on a manifold. Also, a better tailored metric could be
learnt from the data. Some recent works are considering
this option [2], [3] for other tasks. This constitutes an
interesting perspective for the following extensions of our
methodology for the domain adaptation problem.

TABLE I: Results of changing the cost function matrix C
on the Office-Caltech dataset.

Domains `2 `2+preprocessing `22+preprocessing `1

C→A 36.01 39.14 43.01 39.77
C→W 25.08 35.59 37.63 37.63
C→D 31.21 43.31 42.68 42.68
A→C 32.41 34.64 34.46 38.29
A→W 32.88 34.92 32.20 34.24
A→D 35.03 36.94 33.76 36.94
W→C 22.35 32.59 31.79 25.56
W→A 27.56 39.98 38.00 31.84
W→D 84.71 90.45 89.81 92.99
D→C 26.36 31.79 32.32 30.63
D→A 29.54 32.36 30.69 32.67
D→W 74.92 87.80 88.81 87.12
mean 38.17 44.96 44.60 44.20

III. REMARKS ON GENERALIZED CONDITIONAL
GRADIENT

We first present the generalized conditional gradient
algorithm as introduced by Bredies et al. [4] and, in the
subsequent sections, we will provide additional properties
that are of interest when applying this algorithm for regu-
larized optimal transport problems.

A. The generalized conditional gradient algorithm

We are interested in the problem of minimizing under
constraints a composite function such as

min
γ∈B

F (γ) = f(γ) + g(γ), (3)

where both f(·) and g(·) are convex and differentiable
functions and B is a compact set of Rn. One might
want to benefit from this composite structure during the
optimization procedure. For instance, if we have an efficient
solver for optimizing

min
γ∈B

〈∇f,γ〉+ g(γ) (4)

we propose this solver in the optimization scheme instead
of linearizing the whole objective function (as one would
do with a conditional gradient algorithm [5]).

The resulting approach is defined in Algorithm 1. Con-
ceptually, our algorithm lies in-between the original opti-
mization problem and the conditional gradient. Indeed, if
we do not consider any linearization, step 3 of the algorithm
is equivalent to solving the original problem and one iterate
will suffice for convergence. If we use a full linearization
as in the conditional gradient approach, step 3 is equivalent
to solving a rough approximation of the original problem.
By linearizing only a part of the objective function, we thus
optimize a better approximation of that function. This will
lead to a provably better certificate of optimality than the
one of the conditional gradient algorithm [6]. This makes
us thus believe that if an efficient solver of the partially
linearized problem is available, our algorithm is of strong
interest.

Note that this partial linearization idea has already been
introduced by Bredies et al. [4] for solving problem (3).
Their theoretical results related to the resulting algorithm
apply when f(·) is differentiable, g(·), is convex and both
f and g satisfy some others mild conditions like coercivity.
These results state that the generalized conditional gradient
algorithm is a descent method and that any limit point of
the algorithm is a stationary point of f + g.

In what follows, we provide some results when f and
g are differentiable. Some of these results provide novel
insights on the generalized gradient algorithms (relation
between optimality and minimizer of the search direction,
convergence rate, and optimality certificate) while some are
redundant to those proposed by Bredies (convergence).

B. Convergence of the algorithm

1) Reformulating the search direction: Before dis-
cussing convergence of the algorithm, we first reformulated
its step 3 so as to make its properties more accessible and
its convergence analysis more amenable.

The reformulation we propose is

sk = argmin
s∈B

〈∇f(γk), s− γk〉+ g(s)− g(γk) (5)

and it is easy to note that the problem in line 3 of Algorithm
1 is equivalent to this one and leads to the same solution.
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Algorithm 1 Generalized Conditional Gradient (GGG)

1: Initialize k = 0 and γ0 ∈ P
2: repeat
3: Solve problem

sk = argmin
γ∈B

〈
∇f(γk),γ

〉
+ g(γ)

4: Find the optimal step αk with ∆γ = sk − γk

αk = argmin
0≤α≤1

f(γk + α∆γ) + g(γk + α∆γ)

or choose αk so that it satisfies the Armijo rule.
5: γk+1 ← γk + αk∆γ, set k ← k + 1
6: until Convergence

2) Relation between minimizers of Problems 3 and 5 :
The above formulation allows us to derive a property that
highligths the relation between problems 3 and 5.

Proposition 3.1: x? is a minimizer of problem (3) if and
only if

γ? = argmin
s∈B

〈∇f(γ?), s− γ?〉+ g(s)− g(γ?). (6)

Proof: The proof relies on optimality conditions of
constrained convex optimization problem. Indeed, for a
convex and differentiable f and g, γ? is solution of problem
(3) if and only if [7]

−∇f(γ?)−∇g(γ?) ∈ NB(γ?), (7)

where NB(γ) is the normal cone of B at γ. In the same
way, a minimizer s? of problem (5) at γk can also be
characterized as

−∇f(γk)−∇g(s?) ∈ NB(s?). (8)

Now suppose that γ? is a minimizer of problem (3). It is
easy to see that if we choose γk = γ?, then because γ?

satisfies Equation (7), Equation (8) also holds. Conversely,
if γ? is a minimizer of problem (5) at γ?, then γ? also
satisfies Equation (7).

3) Intermediate results and gap certificate: We prove
several lemmas and exhibit a gap certificate that provides
a bound on the difference of the objective value along the
iterations to the optimal objective value.

As one may remark, our algorithm is very similar to a
conditional gradient algorithm, the Frank-Wolfe algorithm.
As such, our proof of convergence of the algorithm will
follow similar lines as those used by Bertsekas. Our
convergence results is based on the following proposition
and definition given in [5].

Proposition 3.2: from [5]. Let {γk} be a sequence gen-
erated by the feasible direction method γk+1 = γk+αk∆γ
with ∆γk = sk − γk. Assume that {∆γk} is gradient-
related and that αk is chosen by the limited minimization
or the Armijo rule, then every limit point of {γk} is a
stationary point.

Definition A sequence ∆γk is said to be gradient-related
to the sequence γk if, for any subsequence of {γk}k∈K
that converges to a non-stationary point, the corresponding
subsequence {∆γk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

∇F (γk)>∆γk < 0

Basically, this property says that if a subsequence
converges to a non-stationary point, then at the limit point
the feasible direction defined by ∆γ is still a descent
direction. Before proving that the sequence defined by
{∆γk} is gradient-related, we prove useful lemmas.

Lemma 3.3: For any γk ∈ B, each ∆γk = sk − γk

defines a feasible descent direction.
Proof: By definition, sk belongs to the convex set B.

Hence, for any αk ∈ [0, 1], γk+1 defines a feasible point.
Hence ∆γk is a feasible direction.

Now let us show that it also defines a descent direction.
By definition of the minimizer sk, we have for all s ∈ B

〈∇f(γk), sk − γk〉+ g(sk)− g(γk) ≤〈∇f(γk), s− γk〉
+ g(s)− g(γk).

Because the above inequality also holds for s = γk, we
have

〈∇f(γk), sk − γk〉+ g(sk)− g(γk) ≤ 0. (9)

By convexity of g(·) we have

g(sk)− g(γk) ≥ 〈∇g(γk), sk − γk〉,

which, plugged in equation, (9) leads to

〈∇f(γk) +∇g(γk), sk − γk〉 ≤ 0

and thus 〈∇F (γk), sk − γk〉 ≤ 0, which proves that ∆γk

is a descent direction.
The next lemma provides an interesting feature of our

algorithm. Indeed, the lemma states that the difference
between the optimal objective value and the current
objective value can be easily monitored.

Lemma 3.4: For all γk ∈ B, the following property
holds

min
s∈B

[
〈∇f(γk), s−γk〉+g(s)−g(γk)

]
≤ F (γ?)−F (γk) ≤ 0,

where γ? is a minimizer of F . In addition, if γk does not
belong to the set of minimizers of F (·), then the second
inequality is strict.

Proof: By convexity of f , we have

f(γ?)− f(γk) ≥ ∇f(γk)>(γ? − γk).

By adding g(γ?) − g(γk) to both sides of the inequality,
we obtain

F (γ?)− F (γk) ≥ ∇f(γk)>(γ? − γk) + g(γ?)− g(γk)

and because γ? is a minimizer of F , we also have 0 ≥
F (γ?)− F (γk). Hence, the following holds

〈∇f(γk),γ?−γk〉+g(γ?)−g(γk) ≤ F (γ?)−F (γk) ≤ 0
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and we also have

min
s∈B

〈∇f(γk), s−γk〉+g(s)−g(γk) ≤ F (γ?)−F (γk) ≤ 0,

which concludes the first part of the proof.
Finally, if γk is not a minimizer of F , then we naturally
have

0 > F (γ?)− F (γk).

4) Proof of convergence: Now that we have all the
pieces of the proof, let us show the key ingredient.

Lemma 3.5: The sequence {∆γk} of our algorithm is
gradient-related.

Proof: For showing that our direction sequence is
gradient-related, we have to show that, given a subsequence
{γk}k∈K that converges to a non-stationary point γ̃, the
sequence {∆γk}k∈K is bounded and that

lim sup
k→∞,k∈K

∇F (γk)>∆γk < 0.

Boundedness of the sequence naturally derives from the
facts that sk ∈ B, γk ∈ B and the set B is bounded.

The second part of the proof starts by showing that

〈∇F (γk), sk − γk〉 = 〈∇f(γk) +∇g(γ), sk − γk〉
≤ 〈∇f(γk), sk − γk〉+ g(sk)− g(γk),

where the last inequality is obtained owing to the convexity
of g. Because that inequality holds for the minimizer, it also
holds for any vector s ∈ B :

〈∇F (γk), sk − γk〉 ≤ 〈∇f(γk), s− γk〉+ g(s)− g(γk).

Taking limit yields to

lim sup
k→∞,k∈K

〈∇F (γk), sk−γk〉 ≤ 〈∇f(γ̃), s−γ̃〉+g(s)−g(γ̃)

for all s ∈ B. As such, this inequality also holds for the
minimizer

lim sup
k→∞,k∈K

〈∇F (γk), sk − γk〉

≤ min
s∈B
〈∇f(γ̃), s− γ̃〉+ g(s)− g(γ̃).

Now, since γ̃ is not stationary, it is not optimal and it does
not belong to the minimizer of F , hence according to the
above lemma 3.4,

min
s∈B

〈∇f(γ̃), s− γ̃〉+ g(s)− g(γ̃) < 0,

which concludes the proof.
This latter lemma proves that our direction sequence is

gradient-related, thus proposition 3.2 applies.

5) Rate of convergence: We can show that the objective
value F (xk) converges towards F (x?) in a linear rate if we
have some additional smoothness condition/DTs of F (·).
We can easily prove this statement by following the steps
proposed by Jaggi et al. [6] for the conditional gradient
algorithm.

We make the hypothesis that there exists a constant CF
so that for any x,y ∈ B and any α ∈ [0, 1], the inequality

F ((1− α)x + αy) ≤ F (x) + α∇F (x)>(y − x) +
CF
2
α2

holds.
Based on this inequality, for a sequence {xk} obtained

from the generalized conditional gradient algorithm we
have

F (xk+1)− F (x?) = F ((1− αk)xk + αksk)− F (x?)

≤ F (xk)− F (x?) + αk∇F (xk)>(sk − xk)

+
CF
2
α2
k. (10)

Let us denote h(xk) = F (xk)−F (x?). Now by adding to
both sides of the inequality αk[g(sk)− g(xk)], we have

h(xk+1) + αk[g(sk)− g(xk)]

≤ h(xk) + αk[∇f(xk)>(sk − xk) + g(sk)− g(xk)]

+αk∇g(xk)>(sk − xk) +
CF
2
α2
k

≤ h(xk) + αk[∇f(xk)>(x? − xk) + g(x?)− g(xk)]

+αk∇g(xk)>(sk − xk) +
CF
2
α2
k,

where the second inequality comes from the definition of
the search direction sk. Because f(·) is convex, we have
f(x?)− f(xk) ≥ ∇f(xk)>(x? − xk). Thus, we have

h(xk+1) + αk[g(sk)− g(xk)]

≤ h(xk) + αk[f(x?)− f(xk) + g(x?)− g(xk)]

+αk∇g(xk)>(sk − xk) +
CF
2
α2
k

≤ (1− αk)h(xk) + αk∇g(xk)>(sk − xk) +
CF
2
α2
k.

Now, again owing to the convexity of g(·), we have 0 ≥
−g(sk) + g(xk)∇g(xk)>(sk − xk). Using this fact in the
last above inequality leads to

h(xk+1) ≤ (1− αk)h(xk) +
CF
2
α2
k. (11)

Based on this result, we can now state the following
Theorem 3.6: For each k ≥ 1, the iterates xk of Algo-

rithm 1 satisfy

F (xk)− F (x?) ≤ 2CF
k + 2

.

Proof: The proof stands on Equation (11) and on the
same induction as the one used by Jaggi et al [6].
Note that this convergence property would also hold if we
choose the step size as αk = 2

k+2 .
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Fig. 5: Example of the evolution of the objective value
along (top) the iterations and (bottom) the running times
for the generalized conditional gradient (CGS) and the
conditional gradient (CG + Mosek) algorithms.

6) Computational performances: Let us first show that
the GCG algorithm is more efficient than a classical condi-
tional gradient method as the one used in [8]. We illustrate
this in Figure 5, showing the convergence (top panel) and
the corresponding computational times (bottom panel). We
take as an example the case of computing the OT-GL
transport plan of digits 1 and 2 in USPS to those in
MNIST. For this example, we have allowed a maximum
of 50 iterations. Regarding convergence of the cost func-
tion along the iterations, we can clearly see that, while
GCG reaches nearly-optimal objective value in around 10
iterations, the CG approach is still far from convergence
after 50 iterations. In addition, the per-iteration cost is
significantly higher for the conditional gradient algorithm.
For this example, we save an order of magnitude of running
time yet CG has not converged.

We now study the computational performances of the
different optimal transport strategies in the visual object
recognition tasks considered above. We use Python im-
plementations of the different OT methods. The test were
run on a simple Macbook pro station, with a 2.4 Ghz
processor. The original OT-Exact solution to the optimal
transport problem is computed with the MOSEK [9] linear
programming solver1, whereas the other strategies follow

1other publicly available solvers were considered, but it turned out this
particular one was an order of magnitude faster than the others

TABLE II: Computational time (seconds) for the best set
of regularization parameters

OT-exact OT-IT OT-GL OT-Laplace
U→M 86.0 4.6 92.5 55.6
M→U 85.0 2.3 75.4 20.5

P1→P2 131.0 30.8 432.7 333.2
P1→P3 133.9 27.9 456.6 296.2
P1→P4 132.5 21.3 276.5 153.4
P2→P1 130.9 38.3 666.8 413.1
P2→P3 65.1 14.3 418.9 182.8
P2→P4 67.8 11.7 270.1 120.0
P3→P1 135.7 36.4 519.0 389.0
P3→P2 67.6 14.3 297.8 156.6
P3→P4 62.2 9.8 248.3 108.8
P4→P1 134.6 22.9 540.4 272.6
P4→P2 66.7 11.1 262.5 123.0
P4→P3 65.3 12.6 269.6 127.5
C→A 26.9 1.2 22.5 17.8
C→W 6.8 0.3 6.6 7.4
C→D 3.4 0.2 3.5 2.4
A→C 26.5 1.1 29.4 23.8
A→W 5.6 0.3 6.0 6.0
A→D 2.9 0.2 3.2 4.1
W→C 6.8 0.3 16.2 7.6
W→A 5.7 0.3 4.1 7.4
W→D 0.8 0.1 2.2 1.1
D→C 3.6 0.2 14.7 5.9
D→A 3.0 0.2 12.5 5.1
D→W 0.8 0.1 3.8 1.1
mean 86.8 20.4 349.1 246.4

our own implementation based on the Sinkhorn-Knopp
method. For the regularized optimal transport OT-GL and
OT-Laplace we used the conditional gradient splitting
algorithm (the source code will be made available upon
the acceptance of the article).

We report in Table II the computational time needed
by the OT methods. As expected, OT-IT is the less com-
putationally intensive. The solution of the exact optimal
transport (OT-exact) is longer to compute by a factor
4. Also, as expected, the two regularized versions OT-
GL and OT-Laplace are the most demanding methods.
We recall here that the maximum number of inner loop
of the GCG approach was set to 10, meaning that each
of those methods made 10 calls to the Sinkhorn-Knopp
solver used by OT-IT. However, the added computational
cost is mostly due to the line search procedure (line 4 in
Algorithm 1), which involves several computations of the
cost function. We explain the difference between OT-GL
and OT-Laplace by the difference of computation time
needed by this procedure. Summing up, one can notice
that, even for large problems (case P1→P4 for instance,
involving 3332×3329 variables), the computation time is
not prohibitive and remains tractable.
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